Перевод: со всех языков на английский

с английского на все языки

Scottish Business School

  • 1 SBS

    Англо-русский словарь промышленной и научной лексики > SBS

  • 2 Napier, Robert

    SUBJECT AREA: Ports and shipping
    [br]
    b. 18 June 1791 Dumbarton, Scotland
    d. 23 June 1876 Shandon, Dunbartonshire, Scotland
    [br]
    Scottish shipbuilder one of the greatest shipbuilders of all time, known as the "father" of Clyde shipbuilding.
    [br]
    Educated at Dumbarton Grammar School, Robert Napier had been destined for the Church but persuaded his father to let him serve an apprenticeship as a blacksmith under him. For a while he worked in Edinburgh, but then in 1815 he commenced business in Glasgow, the city that he served for the rest of his life. Initially his workshop was in Camlachie, but it was moved in 1836 to a riverside factory site at Lancefield in the heart of the City and again in 1841 to the Old Shipyard in the Burgh of Govan (then independent of the City of Glasgow). The business expanded through his preparedness to build steam machinery, beginning in 1823 with the engines for the paddle steamer Leven, still to be seen a few hundred metres from Napier's grave in Dumbarton. His name assured owners of quality, and business expanded after two key orders: one in 1836 for the Honourable East India Company; and the second two years later for the Royal Navy, hitherto the preserve of the Royal Dockyards and of the shipbuilders of south-east England. Napier's shipyard and engine shops, then known as Robert Napier and Sons, were to be awarded sixty Admiralty contracts in his lifetime, with a profound influence on ship and engine procurement for the Navy and on foreign governments, which for the first time placed substantial work in the United Kingdom.
    Having had problems with hull subcontractors and also with the installation of machinery in wooden hulls, in 1843 Napier ventured into shipbuilding with the paddle steamer Vanguard, which was built of iron. The following year the Royal Navy took delivery of the iron-hulled Jackall, enabling Napier to secure the contract for the Black Prince, Britain's second ironclad and sister ship to HMS Warrior now preserved at Portsmouth. With so much work in iron Napier instigated studies into metallurgy, and the published work of David Kirkaldy bears witness to his open-handedness in assisting the industry. This service to industry was even more apparent in 1866 when the company laid out the Skelmorlie Measured Mile on the Firth of Clyde for ship testing, a mile still in use by ships of all nations.
    The greatest legacy of Robert Napier was his training of young engineers, shipbuilders and naval architects. Almost every major Scottish shipyard, and some English too, was influenced by him and many of his early foremen left to set up rival establishments along the banks of the River Clyde. His close association with Samuel Cunard led to the setting up of the company now known as the Cunard Line. Napier designed and engined the first four ships, subcontracting the hulls of this historic quartet to other shipbuilders on the river. While he contributed only 2 per cent to the equity of the shipping line, they came back to him for many more vessels, including the magnificent paddle ship Persia, of 1855.
    It is an old tradition on the Clyde that the smokestacks of ships are made by the enginebuilders. The Cunard Line still uses red funnels with black bands, Napier's trademark, in honour of the engineer who set them going.
    [br]
    Principal Honours and Distinctions
    Knight Commander of the Dannebrog (Denmark). President, Institution of Mechanical Engineers 1864. Honorary Member of the Glasgow Society of Engineers 1869.
    Further Reading
    James Napier, 1904, The Life of Robert Napier, Edinburgh, Blackwood.
    J.M.Halliday, 1980–1, "Robert Napier. The father of Clyde shipbuilding", Transactions of the Institution of Engineers and Shipbuilders in Scotland 124.
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Napier, Robert

  • 3 Nasmyth, James Hall

    [br]
    b. 19 August 1808 Edinburgh, Scotland
    d. 7 May 1890 London, England
    [br]
    Scottish mechanical engineer and inventor of the steam-hammer.
    [br]
    James Nasmyth was the youngest son of Alexander Nasmyth (1758–1840), the portrait and landscape painter. According to his autobiography he was named James Hall after his father's friend, the geologist Sir James Hall (1761–1832), but he seems never to have used his second name in official documents. He received an elementary education at Edinburgh High School, but left at the age of 12. He attended evening classes at the Edinburgh School of Arts for the instruction of Mechanics between 1821 and 1825, and gained experience as a mechanic at an early age in his father's workshop. He shared these early experiences with his brother George, who was only a year or so older, and in the 1820s the brothers built several model steam engines and a steam-carriage capable of carrying eight passengers on the public roads. In 1829 Nasmyth obtained a position in London as personal assistant to Henry Maudslay, and after Maudslay's death in February 1831 he remained with Maudslay's partner, Joshua Field, for a short time. He then returned to Edinburgh, where he and his brother George started in a small way as general engineers. In 1834 they moved to a small workshop in Manchester, and in 1836, with the aid of financial backing from some Manchester businessmen, they established on a site at Patricroft, a few miles from the city, the works which became known as the Bridgewater Foundry. They were soon joined by a third partner, Holbrook Gaskell (1813–1909), who looked after the administration of the business, the firm then being known as Nasmyths Gaskell \& Co. They specialized in making machine tools, and Nasmyth invented many improvements so that they soon became one of the leading manufacturers in this field. They also made steam locomotives for the rapidly developing railways. James Nasmyth's best-known invention was the steam-hammer, which dates from 1839 but was not patented until 1842. The self-acting control gear was probably the work of Robert Wilson and ensured the commercial success of the invention. George Nasmyth resigned from the partnership in 1843 and in 1850 Gaskell also resigned, after which the firm continued as James Nasmyth \& Co. James Nasmyth himself retired at the end of 1856 and went to live at Penshurst, Kent, in a house which he named "Hammerfield" where he devoted his time mainly to his hobby of astronomy. Robert Wilson returned to become Managing Partner of the firm, which later became Nasmyth, Wilson \& Co. and retained that style until its closure in 1940. Nasmyth's claim to be the sole inventor of the steam-hammer has been disputed, but his patent of 1842 was not challenged and the fourteen-year monopoly ensured the prosperity of the business so that he was able to retire at the age of 48. At his death in 1890 he left an estate valued at £243,805.
    [br]
    Bibliography
    1874, with J.Carpenter, The Moon Considered as a Planet, a World, and a Satellite, London.
    1883, Autobiography, ed. Samuel Smiles, London.
    Further Reading
    R.Wailes, 1963, "James Nasmyth—Artist's Son", Engineering Heritage, vol. I, London, 106–11 (a short account).
    J.A.Cantrell, 1984, James Nasmyth and the Bridgewater Foundry: A Study of Entrepreneurship in the Early Engineering Industry, Manchester (a full-length critical study).
    ——1984–5, "James Nasmyth and the steam hammer", Transactions of the Newcomen Society 56:133–8.
    RTS

    Biographical history of technology > Nasmyth, James Hall

  • 4 Bell, Henry

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1767 Torphichen Mill, near Linlithgow, Scotland
    d. 1830 Helensburgh, Scotland
    [br]
    Scottish projector of the first steamboat service in Europe.
    [br]
    The son of Patrick Bell, a millwright, Henry had two sisters and an elder brother and was educated at the village school. When he was 9 years old Henry was sent to lodge in Falkirk with an uncle and aunt of his mother's so that he could attend the school there. At the age of 12 he left school and agreed to become a mason with a relative. In 1783, after only three years, he was bound apprentice to his Uncle Henry, a millwright at Jay Mill. He stayed there for a further three years and then, in 1786, joined the firm of Shaw \& Hart, shipbuilders of Borrowstoneness. These were to be the builders of William Symington's hull for the Charlotte Dundas. He also spent twelve months with Mr James Inglis, an engineer of Bellshill, Lanarkshire, and then went to London to gain experience, working for the famous John Rennie for some eighteen months. By 1790 he was back in Glasgow, and a year later he took a partner, James Paterson, into his new business of builder and contractor, based in the Trongate. He later referred to himself as "architect", and his partnership with Paterson lasted seven years. He is said to have invented a discharging machine for calico printing, as well as a steam dredger for clearing the River Clyde.
    The Baths Hotel was opened in Helensburgh in 1808, with the hotel-keeper, who was also the first provost of the town, being none other than Henry Bell. It has been suggested that Bell was also the builder of the hotel and this seems very likely. Bell installed a steam engine for pumping sea water out of the Clyde and into the baths, and at first ran a coach service to bring customers from Glasgow three days a week. The driver was his brother Tom. The coach was replaced by the Comet steamboat in 1812.
    While Henry was busy with his provost's duties and making arrangements for the building of his steamboat, his wife Margaret, née Young, whom he married in March 1794, occupied herself with the management of the Baths Hotel. Bell did not himself manufacture, but supervised the work of experts: John and Charles Wood of Port Glasgow, builders of the 43ft 6 in. (13.25 m)-long hull of the Comet; David Napier of Howard Street Foundry for the boiler and other castings; and John Robertson of Dempster Street, who had previously supplied a small engine for pumping water to the baths at the hotel in Helensburgh, for the 3 hp engine. The first trials of the finished ship were held on 24 July 1812, when she was launched from Wood's yard. A regular service was advertised in the Glasgow Chronicle on 5 August and was the first in Europe, preceded only by that of Robert Fulton in the USA. The Comet continued to run until 1820, when it was wrecked.
    Bell received little reward for his promotion of steam navigation, merely small pensions from the Clyde trustees and others. He was buried at the parish church of Rhu.
    [br]
    Further Reading
    Edward Morris, 1844, Life of Henry Bell.
    Henry Bell, 1813, Applying Steam Engines to Vessels.
    IMcN

    Biographical history of technology > Bell, Henry

  • 5 Kirkaldy, David

    [br]
    b. 4 April 1820 Mayfield, Dundee, Scotland
    d. 25 January 1897 London, England
    [br]
    Scottish engineer and pioneer in materials testing.
    [br]
    The son of a merchant of Dundee, Kirkaldy was educated there, then at Merchiston Castle School, Edinburgh, and at Edinburgh University. For a while he worked in his father's office, but with a preference for engineering, in 1843 he commenced an apprenticeship at the Glasgow works of Robert Napier. After four years in the shops he was transferred to the drawing office and in a very few years rose to become Chief. Here Kirkaldy demonstrated a remarkable talent both for the meticulous recording of observations and data and for technical drawing. His work also had an aesthetic appeal and four of his drawings of Napier steamships were shown at the Paris Exhibition of 1855, earning both Napier and Kirkaldy a medal. His "as fitted" set of drawings of the Cunard Liner Persia, which had been built in 1855, is now in the possession of the National Maritime Museum at Greenwich, London; it is regarded as one of the finest examples of its kind in the world, and has even been exhibited at the Royal Academy in London.
    With the impending order for the Royal Naval Ironclad Black Prince (sister ship to HMS Warrior, now preserved at Portsmouth) and for some high-pressure marine boilers and engines, there was need for a close scientific analysis of the physical properties of iron and steel. Kirkaldy, now designated Chief Draughtsman and Calculator, was placed in charge of this work, which included comparisons of puddled steel and wrought iron, using a simple lever-arm testing machine. The tests lasted some three years and resulted in Kirkaldy's most important publication, Experiments on Wrought Iron and Steel (1862, London), which gained him wide recognition for his careful and thorough work. Napier's did not encourage him to continue testing; but realizing the growing importance of materials testing, Kirkaldy resigned from the shipyard in 1861. For the next two and a half years Kirkaldy worked on the design of a massive testing machine that was manufactured in Leeds and installed in premises in London, at The Grove, Southwark.
    The works was open for trade in January 1866 and engineers soon began to bring him specimens for testing on the great machine: Joseph Cubitt (son of William Cubitt) brought him samples of the materials for the new Blackfriars Bridge, which was then under construction. Soon The Grove became too cramped and Kirkaldy moved to 99 Southwark Street, reopening in January 1874. In the years that followed, Kirkaldy gained a worldwide reputation for rigorous and meticulous testing and recording of results, coupled with the highest integrity. He numbered the most distinguished engineers of the time among his clients.
    After Kirkaldy's death, his son William George, whom he had taken into partnership, carried on the business. When the son died in 1914, his widow took charge until her death in 1938, when the grandson David became proprietor. He sold out to Treharne \& Davies, chemical consultants, in 1965, but the works finally closed in 1974. The future of the premises and the testing machine at first seemed threatened, but that has now been secured and the machine is once more in working order. Over almost one hundred years of trading in South London, the company was involved in many famous enquiries, including the analysis of the iron from the ill-fated Tay Bridge (see Bouch, Sir Thomas).
    [br]
    Principal Honours and Distinctions
    Institution of Engineers and Shipbuilders in Scotland Gold Medal 1864.
    Bibliography
    1862, Results of an Experimental Inquiry into the Tensile Strength and Other Properties of Wrought Iron and Steel (originally presented as a paper to the 1860–1 session of the Scottish Shipbuilders' Association).
    Further Reading
    D.P.Smith, 1981, "David Kirkaldy (1820–97) and engineering materials testing", Transactions of the Newcomen Society 52:49–65 (a clear and well-documented account).
    LRD / FMW

    Biographical history of technology > Kirkaldy, David

  • 6 Denny, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 25 May 1847 Dumbarton, Scotland
    d. 17 March 1887 Buenos Aires, Argentina
    [br]
    Scottish naval architect and partner in the leading British scientific shipbuilding company.
    [br]
    From 1844 until 1962, the Clyde shipyard of William Denny and Brothers, Dumbarton, produced over 1,500 ships, trained innumerable students of all nationalities in shipbuilding and marine engineering, and for the seventy-plus years of their existence were accepted worldwide as the leaders in the application of science to ship design and construction. Until the closure of the yard members of the Denny family were among the partners and later directors of the firm: they included men as distinguished as Dr Peter Denny (1821(?)–95), Sir Archibald Denny (1860–1936) and Sir Maurice Denny (1886– 1955), the main collaborator in the design of the Denny-Brown ship stabilizer.
    One of the most influential of this shipbuilding family was William Denny, now referred to as William 3! His early education was at Dumbarton, then on Jersey and finally at the Royal High School, Edinburgh, before he commenced an apprenticeship at his father's shipyard. From the outset he not only showed great aptitude for learning and hard work but also displayed an ability to create good relationships with all he came into contact with. At the early age of 21 he was admitted a partner of the shipbuilding business of William Denny and Brothers, and some years later also of the associated engineering firm of Denny \& Co. His deep-felt interest in what is now known as industrial relations led him in 1871 to set up a piecework system of payment in the shipyard. In this he was helped by the Yard Manager, Richard Ramage, who later was to found the Leith shipyard, which produced the world's most elegant steam yachts. This research was published later as a pamphlet called The Worth of Wages, an unusual and forward-looking action for the 1860s, when Denny maintained that an absentee employer should earn as much contempt and disapproval as an absentee landlord! In 1880 he initiated an awards scheme for all company employees, with grants and awards for inventions and production improvements. William Denny was not slow to impose new methods and to research naval architecture, a special interest being progressive ship trials with a view to predicting effective horsepower. In time this led to his proposal to the partners to build a ship model testing tank beside the Dumbarton shipyard; this scheme was completed in 1883 and was to the third in the world (after the Admiralty tank at Torquay, managed by William Froude and the Royal Netherlands Navy facility at Amsterdam, under B.J. Tideman. In 1876 the Denny Shipyard started work with mild-quality shipbuilding steel on hulls for the Irrawaddy Flotilla Company, and in 1879 the world's first two ships of any size using this weight-saving material were produced: they were the Rotomahana for the Union Steamship Company of New Zealand and the Buenos Ayrean for the Allan Line of Glasgow. On the naval-architecture side he was involved in Denny's proposals for standard cross curves of stability for all ships, which had far-reaching effects and are now accepted worldwide. He served on the committee working on improvements to the Load Line regulations and many other similar public bodies. After a severe bout of typhoid and an almost unacceptable burden of work, he left the United Kingdom for South America in June 1886 to attend to business with La Platense Flotilla Company, an associate company of William Denny and Brothers. In March the following year, while in Buenos Aires, he died by his own hand, a death that caused great and genuine sadness in the West of Scotland and elsewhere.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1886. FRS Edinburgh 1879.
    Bibliography
    William Denny presented many papers to various bodies, the most important being to the Institution of Naval Architects and to the Institution of Engineers and Shipbuilders in Scotland. The subjects include: trials results, the relation of ship speed to power, Lloyd's Numerals, tonnage measurement, layout of shipyards, steel in shipbuilding, cross curves of stability, etc.
    Further Reading
    A.B.Bruce, 1889, The Life of William Denny, Shipbuilder, London: Hodder \& Stoughton.
    Denny Dumbarton 1844–1932 (a souvenir hard-back produced for private circulation by the shipyard).
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Denny, William

  • 7 Kennedy, John

    SUBJECT AREA: Textiles
    [br]
    b. 4 July 1769 Knocknalling, Kirkcudbrightshire, Scotland
    d. 30 October 1855 Ardwick Hall, Manchester, England
    [br]
    Scottish cotton spinner and textile machine maker.
    [br]
    Kennedy was the third son of his father, Robert, and went to the village school in Dalry. On his father's death, he was sent at the age of 14 to Chowbent, Lancashire, where he was apprenticed to William Cannan, a maker of textile machines such as carding frames, Hargreaves's jennies and Arkwright's waterframes. On completion of his apprenticeship in 1791, he moved to Manchester and entered into partnership with Benjamin and William Sandford and James M'Connel, textile machine makers and mule spinners. In 1795 this partnership was terminated and one was made with James M'Connel to form the firm M'Connel \& Kennedy, cotton spinners.
    Kennedy introduced improvements for spinning fine yarns and the firm of M'Connel \& Kennedy became famous for the quality of these products, which were in great demand. He made the spindles turn faster during the second part of the mule carriage's outward draw, and from 1793 onwards he experimented with driving mules by steam engines. Like William Kelly at New Lanark, he succeeded in making the spinning sequences power-operated by 1800, although the spinner had to take over the winding on. This made the mule into a factory machine, but it still required skilled operators. He was also involved with Henry Houldsworth, Junior, in the improvement of the roving frame. In 1803 Kennedy joined the Manchester Literary \& Philosophical Society, to which he presented several papers, including one in 1830 on "A memoir of Samuel Crompton". He retired from the spinning business in 1826, but continued his technical and mechanical pursuits. He was consulted about whether the Liverpool \& Manchester Railway should have moving or stationary steam engines and was an umpire at the Rainhill Trials in 1829.
    [br]
    Further Reading
    Dictionary of National Biography.
    W.Fairbairn, obituary, Manchester Memoirs, Manchester Literary and Philosophical Society.
    C.H.Lee, 1972, A Cotton Enterprise 1795–1840. A History of M'Connel \& Kennedy, Fine
    Cotton Spinners, Manchester (an account of Kennedy's spinning business). R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (provides details of Kennedy's inventions on the mule).
    RLH

    Biographical history of technology > Kennedy, John

  • 8 Watt, James

    [br]
    b. 19 January 1735 Greenock, Renfrewshire, Scotland
    d. 19 August 1819 Handsworth Heath, Birmingham, England
    [br]
    Scottish engineer and inventor of the separate condenser for the steam engine.
    [br]
    The sixth child of James Watt, merchant and general contractor, and Agnes Muirhead, Watt was a weak and sickly child; he was one of only two to survive childhood out of a total of eight, yet, like his father, he was to live to an age of over 80. He was educated at local schools, including Greenock Grammar School where he was an uninspired pupil. At the age of 17 he was sent to live with relatives in Glasgow and then in 1755 to London to become an apprentice to a mathematical instrument maker, John Morgan of Finch Lane, Cornhill. Less than a year later he returned to Greenock and then to Glasgow, where he was appointed mathematical instrument maker to the University and was permitted in 1757 to set up a workshop within the University grounds. In this position he came to know many of the University professors and staff, and it was thus that he became involved in work on the steam engine when in 1764 he was asked to put in working order a defective Newcomen engine model. It did not take Watt long to perceive that the great inefficiency of the Newcomen engine was due to the repeated heating and cooling of the cylinder. His idea was to drive the steam out of the cylinder and to condense it in a separate vessel. The story is told of Watt's flash of inspiration as he was walking across Glasgow Green one Sunday afternoon; the idea formed perfectly in his mind and he became anxious to get back to his workshop to construct the necessary apparatus, but this was the Sabbath and work had to wait until the morrow, so Watt forced himself to wait until the Monday morning.
    Watt designed a condensing engine and was lent money for its development by Joseph Black, the Glasgow University professor who had established the concept of latent heat. In 1768 Watt went into partnership with John Roebuck, who required the steam engine for the drainage of a coal-mine that he was opening up at Bo'ness, West Lothian. In 1769, Watt took out his patent for "A New Invented Method of Lessening the Consumption of Steam and Fuel in Fire Engines". When Roebuck went bankrupt in 1772, Matthew Boulton, proprietor of the Soho Engineering Works near Birmingham, bought Roebuck's share in Watt's patent. Watt had met Boulton four years earlier at the Soho works, where power was obtained at that time by means of a water-wheel and a steam engine to pump the water back up again above the wheel. Watt moved to Birmingham in 1774, and after the patent had been extended by Parliament in 1775 he and Boulton embarked on a highly profitable partnership. While Boulton endeavoured to keep the business supplied with capital, Watt continued to refine his engine, making several improvements over the years; he was also involved frequently in legal proceedings over infringements of his patent.
    In 1794 Watt and Boulton founded the new company of Boulton \& Watt, with a view to their retirement; Watt's son James and Boulton's son Matthew assumed management of the company. Watt retired in 1800, but continued to spend much of his time in the workshop he had set up in the garret of his Heathfield home; principal amongst his work after retirement was the invention of a pantograph sculpturing machine.
    James Watt was hard-working, ingenious and essentially practical, but it is doubtful that he would have succeeded as he did without the business sense of his partner, Matthew Boulton. Watt coined the term "horsepower" for quantifying the output of engines, and the SI unit of power, the watt, is named in his honour.
    [br]
    Principal Honours and Distinctions
    FRS 1785. Honorary LLD, University of Glasgow 1806. Foreign Associate, Académie des Sciences, Paris 1814.
    Further Reading
    H.W.Dickinson and R Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    L.T.C.Rolt, 1962, James Watt, London: B.T. Batsford.
    R.Wailes, 1963, James Watt, Instrument Maker (The Great Masters: Engineering Heritage, Vol. 1), London: Institution of Mechanical Engineers.
    IMcN

    Biographical history of technology > Watt, James

  • 9 обучение

    1) General subject: apprenticeship (ремеслу), drill (строевое), drilling (войск), education, enlightenment, instruction, learning (животного), nurture, re education, re-education (инвалидов), school, schooling (школьное), teaching, training, tuition, tutelage, tutoring
    2) Computers: habitation
    3) Biology: education (характера, способностей), training (собак)
    4) Military: academic training (курсанта, слушателя), (теоретическое) class, (общее) education, indoctrination, instruction (практическим навыкам)
    5) Engineering: learning
    6) Mathematics: training (of, in)
    7) Law: trainee
    8) Psychology: discipline
    9) Scottish language: lear
    10) Information technology: habituation
    11) Astronautics: practice
    13) Advertising: tng.
    14) Business: educational work
    15) Automation: lead-through (напр. робота), teach-in, walkthrough (напр. робота)
    17) Aviation medicine: drill( физическое)
    18) Makarov: tutorial

    Универсальный русско-английский словарь > обучение

  • 10 il

    art m sg the
    il signor Conte Mr Conte
    il martedì on Tuesdays
    3000 lire il chilo 3000 lire a kilo
    mi piace il caffè I like coffee
    * * *
    il1 art.det.m.sing.
    1 the: il buono e il cattivo, the good and the bad; il principio e la fine, the beginning and the end; il rovescio della medaglia, the other side of the coin; il punto di partenza, the starting point; il Mar Mediterraneo, the Mediterranean Sea; il Canale della Manica, the English Channel; il Capo di Buona Speranza, the Cape of Good Hope; il Po è più lungo del Tevere, the Po is longer than the Tiber; il re di Francia, the king of France; il Principe di Galles, the Prince of Wales; il Primo Ministro britannico, the British Prime Minister; Alfredo il Grande, Alfred the Great; il cielo è sereno, the sky is clear; il sole era già alto sull'orizzonte, the sun was already high above the horizon; il signore in prima fila è il prefetto, the man in the front row is the Prefect; è il primo nell'elenco, he's the first on the list; il film più premiato dell'anno, the most highly acclaimed film of the year; ti rendo il libro che mi hai prestato, I'm giving you back the book you lent me; il ventesimo secolo, the twentieth century; la scuola riprende il 1o di settembre, school starts again on 1st September (letto September the first); il leone è simbolo di forza, the lion is a symbol of strength
    2 (spesso non si traduce): il signor Rossi, Mr Rossi; il dottor Bianchi, Dr Bianchi; il tenente Brown, Lieutenant Brown; il re Giorgio III, King George III; il Presidente Bush, President Bush; il Giappone, Japan; il Monte Bianco, Mont Blanc; il giorno di Natale, Christmas Day; nel 1989, in 1989; il mese prossimo, scorso, next, last month; il museo resta chiuso il lunedì, the museum is closed on Mondays; il golf è lo sport nazionale degli Scozzesi, golf is the Scottish national sport; il latte è un alimento completo, milk is a meal in itself; il calcio e il magnesio sono elementi chimici, calcium and magnesium are chemical elements; prendiamo il tè alle cinque, we have tea at 5 o'clock; il pranzo è servito, dinner is served; (il) viaggiare arricchisce la mente, travel broadens the mind; adoro il giallo, I love yellow; studia il tedesco e il russo, he studies German and Russian; il consumismo è un tipico aspetto della vita moderna, consumerism is a typical aspect of life today; il mio orologio è fermo, my watch has stopped; il padre di Enrico, Henry's father; il Verga è il massimo esponente del verismo italiano, Verga is the greatest exponent of Italian realism
    3 (si traduce con un agg. poss.): lui è italiano, il padre e la madre sono tedeschi, he's Italian, but his mother and father are German; devo mettere il vestito nuovo?, shall I wear my new dress?; togliti il soprabito, take your coat off; quanto zucchero metti nel caffè?, how much sugar do you put in your coffee?; non mettere il naso nelle faccende che non ti riguardano, don't poke your nose into other people's business // perdere il lume della ragione, to lose one's reason (o to go off one's mind)
    4 (si traduce con l'art. indef.) a, an: il serpente è un rettile, a snake is a reptile; il farmacista vende medicinali, a chemist sells medicines; per eseguire questo calcolo occorre il computer, you need a calculator for this sum; ha il naso affilato, he's got a sharp nose; abbiamo una casa col giardino davanti, we have a house with a garden in front; il nonno fumava il sigaro, my grandfather smoked a cigar; da grande vuol fare il calciatore, he wants to be a footballer when he grows up; chiedere il divorzio, to ask for a divorce
    5 (si traduce con il partitivo) some, any: hai comprato il sale?, have you bought any salt?; devo scendere in cantina a prendere il vino, I must go down to the cellar for some wine; questa pentola non ha il coperchio, this pan hasn't got any lid
    6 (con valore distr.) a, an: le rose costano dieci euro il mazzo, the roses cost ten euros a bunch; guadagna 1.800 euro al mese, he earns 1,800 euros a month.
    il2 pron.pers.m. 3a pers.sing.compl.ogg. (ant.) him, it.
    * * *
    [il]
    articolo determinativo maschile singolare (il, lo, la; pl. , gli, le; in the masculine, il is used before a consonant sound, except before s followed by a consonant, and before gn, pn, ps, x and z; lo is used before a vowel sound - in the form l' -, before s followed by a consonant, and before gn, pn, ps, x and z; la is used in the feminine, but the form l' is used before a vowel) the spesso omesso
    * * *
    il
    /il/
    artc.det.m.sing.
    (il, lo, la; pl. i, gli, le; in the masculine, il is used before a consonant sound, except before s followed by a consonant, and before gn, pn, ps, x and z; lo is used before a vowel sound - in the form l' -, before s followed by a consonant, and before gn, pn, ps, x and z; la is used in the feminine, but the form l' is used before a vowel) the spesso omesso.
    \
    See also notes... (il.pdf)

    Dizionario Italiano-Inglese > il

  • 11 Bell, Imrie

    [br]
    b. 1836 Edinburgh, Scotland
    d. 21 November 1906 Croydon, Surrey, England
    [br]
    Scottish civil engineer who built singular and pioneering structures.
    [br]
    Following education at the Royal High School of Edinburgh, Bell served an apprenticeship with a Mr Bertram, engineer and shipwright of Leith, before continuing as a regular pupil with Bell and Miller, the well-known civil engineers of Glasgow. A short period at Pelton Colliery in County Durham followed, and then at the early age of 20 Bell was appointed Resident Engineer on the construction of the Meadowside Graving Dock in Glasgow.
    The Meadowside Dry Dock was opened on 28 January 1858 and was a remarkable act of faith by the proprietors Messrs Tod and McGregor, one of the earliest companies in iron shipbuilding in the British Isles. It was the first dry dock in the City of Glasgow and used the mouth of the river Kelvin for canting ships; at the time the dimensions of 144×19×5.5m depth were regarded as quite daring. This dock was to remain in regular operation for nearly 105 years and is testimony to the skills of Imrie Bell and his colleagues.
    In the following years he worked for the East India Railway Company, where he was in charge of the southern half of the Jumna Railway Bridge at Allahabad, before going on to other exciting civil engineering contracts in India. On his return home, Bell became Engineer to Leith Docks, and three years later he became Executive Engineer to the States of Jersey, where he constructed St Helier's Harbour and the lighthouse at La Corbiere—the first in Britain to be built with Portland cement. In 1878 he rejoined his old firm of Bell and Miller, and ultimately worked from their Westminster office. One of his last jobs in Scotland was supervising the building of the Great Western Road Bridge in Glasgow, one of the beautiful bridges in the West End of the city.
    Bell retired from business in 1898 and lived in Surrey for the rest of his life.
    [br]
    Bibliography
    1879–80, "On the St Helier's Harbour works", Transactions of the Institution of Engineers and Shipbuilders in Scotland 23.
    Further Reading
    Fred M.Walker, 1984, Song of the Clyde, Cambridge: PSL.
    FMW

    Biographical history of technology > Bell, Imrie

  • 12 Campbell-Swinton, Alan Archibald

    [br]
    b. 18 October 1863 Kimmerghame, Berwickshire, Scotland
    d. 19 February 1930 London, England
    [br]
    Scottish electrical engineer who correctly predicted the development of electronic television.
    [br]
    After a time at Cargilfield Trinity School, Campbell-Swinton went to Fettes College in Edinburgh from 1878 to 1881 and then spent a year abroad in France. From 1882 until 1887 he was employed at Sir W.G.Armstrong's works in Elswick, Newcastle, following which he set up his own electrical contracting business in London. This he gave up in 1904 to become a consultant. Subsequently he was an engineer with many industrial companies, including the W.T.Henley Telegraph Works Company, Parson Marine Steam Turbine Company and Crompton Parkinson Ltd, of which he became a director. During this time he was involved in electrical and scientific research, being particularly associated with the development of the Parson turbine.
    In 1903 he tried to realize distant electric vision by using a Braun oscilloscope tube for the. image display, a second tube being modified to form a synchronously scanned camera, by replacing the fluorescent display screen with a photoconductive target. Although this first attempt at what was, in fact, a vidicon camera proved unsuccessful, he was clearly on the right lines and in 1908 he wrote a letter to Nature with a fairly accurate description of the principles of an all-electronic television system using magnetically deflected cathode ray tubes at the camera and receiver, with the camera target consisting of a mosaic of photoconductive elements that were scanned and discharged line by line by an electron beam. He expanded on his ideas in a lecture to the Roentgen Society, London, in 1911, but it was over twenty years before the required technology had advanced sufficiently for Shoenberg's team at EMI to produce a working system.
    [br]
    Principal Honours and Distinctions
    FRS (Member of Council 1927 and 1929). Freeman of the City of London. Liveryman of Goldsmiths' Company. First President, Wireless Society 1920–1. Vice-President, Royal Society of Arts, and Chairman of Council 1917–19,1920–2. Chairman, British Scientific Research Association. Vice-President, British Photographic Research Association. Member of the Broadcasting Board 1924. Vice-President, Roentgen Society 1911–12. Vice-President, Institution of Electrical Engineers 1921–5. President, Radio Society of Great Britain 1913–21. Manager, Royal Institution 1912–15.
    Bibliography
    1908, Nature 78:151; 1912, Journal of the Roentgen Society 8:1 (both describe his original ideas for electronic television).
    1924, "The possibilities of television", Wireless World 14:51 (gives a detailed description of his proposals, including the use of a threestage valve video amplifier).
    1926, Nature 118:590 (describes his early experiments of 1903).
    Further Reading
    The Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271 (a report of some of the early developments in television). A.A.Campbell-Swinton FRS 1863–1930, Royal Television Society Monograph, 1982, London (a biography).
    KF

    Biographical history of technology > Campbell-Swinton, Alan Archibald

  • 13 Elder, John

    [br]
    b. 9 March 1824 Glasgow, Scotland
    d. 17 September 1869 London, England
    [br]
    Scottish engineer who introduced the compound steam engine to ships and established an important shipbuilding company in Glasgow.
    [br]
    John was the third son of David Elder. The father came from a family of millwrights and moved to Glasgow where he worked for the well-known shipbuilding firm of Napier's and was involved with improving marine engines. John was educated at Glasgow High School and then for a while at the Department of Civil Engineering at Glasgow University, where he showed great aptitude for mathematics and drawing. He spent five years as an apprentice under Robert Napier followed by two short periods of activity as a pattern-maker first and then a draughtsman in England. He returned to Scotland in 1849 to become Chief Draughtsman to Napier, but in 1852 he left to become a partner with the Glasgow general engineering company of Randolph Elliott \& Co. Shortly after his induction (at the age of 28), the engineering firm was renamed Randolph Elder \& Co.; in 1868, when the partnership expired, it became known as John Elder \& Co. From the outset Elder, with his partner, Charles Randolph, approached mechanical (especially heat) engineering in a rigorous manner. Their knowledge and understanding of entropy ensured that engine design was not a hit-and-miss affair, but one governed by recognition of the importance of the new kinetic theory of heat and with it a proper understanding of thermodynamic principles, and by systematic development. In this Elder was joined by W.J.M. Rankine, Professor of Civil Engineering and Mechanics at Glasgow University, who helped him develop the compound marine engine. Elder and Randolph built up a series of patents, which guaranteed their company's commercial success and enabled them for a while to be the sole suppliers of compound steam reciprocating machinery. Their first such engine at sea was fitted in 1854 on the SS Brandon for the Limerick Steamship Company; the ship showed an improved performance by using a third less coal, which he was able to reduce still further on later designs.
    Elder developed steam jacketing and recognized that, with higher pressures, triple-expansion types would be even more economical. In 1862 he patented a design of quadruple-expansion engine with reheat between cylinders and advocated the importance of balancing reciprocating parts. The effect of his improvements was to greatly reduce fuel consumption so that long sea voyages became an economic reality.
    His yard soon reached dimensions then unequalled on the Clyde where he employed over 4,000 workers; Elder also was always interested in the social welfare of his labour force. In 1860 the engine shops were moved to the Govan Old Shipyard, and again in 1864 to the Fairfield Shipyard, about 1 mile (1.6 km) west on the south bank of the Clyde. At Fairfield, shipbuilding was commenced, and with the patents for compounding secure, much business was placed for many years by shipowners serving long-distance trades such as South America; the Pacific Steam Navigation Company took up his ideas for their ships. In later years the yard became known as the Fairfield Shipbuilding and Engineering Company Ltd, but it remains today as one of Britain's most efficient shipyards and is known now as Kvaerner Govan Ltd.
    In 1869, at the age of only 45, John Elder was unanimously elected President of the Institution of Engineers and Shipbuilders in Scotland; however, before taking office and giving his eagerly awaited presidential address, he died in London from liver disease. A large multitude attended his funeral and all the engineering shops were silent as his body, which had been brought back from London to Glasgow, was carried to its resting place. In 1857 Elder had married Isabella Ure, and on his death he left her a considerable fortune, which she used generously for Govan, for Glasgow and especially the University. In 1883 she endowed the world's first Chair of Naval Architecture at the University of Glasgow, an act which was reciprocated in 1901 when the University awarded her an LLD on the occasion of its 450th anniversary.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1869.
    Further Reading
    Obituary, 1869, Engineer 28.
    1889, The Dictionary of National Biography, London: Smith Elder \& Co. W.J.Macquorn Rankine, 1871, "Sketch of the life of John Elder" Transactions of the
    Institution of Engineers and Shipbuilders in Scotland.
    Maclehose, 1886, Memoirs and Portraits of a Hundred Glasgow Men.
    The Fairfield Shipbuilding and Engineering Works, 1909, London: Offices of Engineering.
    P.M.Walker, 1984, Song of the Clyde, A History of Clyde Shipbuilding, Cambridge: PSL.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge: Cambridge University Press (covers Elder's contribution to the development of steam engines).
    RLH / FMW

    Biographical history of technology > Elder, John

  • 14 Ewart, Peter

    SUBJECT AREA: Textiles
    [br]
    b. 14 May 1767 Traquair, near Peebles, Scotland
    d. September 1842 London, England
    [br]
    Scottish pioneer in the mechanization of the textile industry.
    [br]
    Peter Ewart, the youngest of six sons, was born at Traquair manse, where his father was a clergyman in the Church of Scotland. He was educated at the Free School, Dumfries, and in 1782 spent a year at Edinburgh University. He followed this with an apprenticeship under John Rennie at Musselburgh before moving south in 1785 to help Rennie erect the Albion corn mill in London. This brought him into contact with Boulton \& Watt, and in 1788 he went to Birmingham to erect a waterwheel and other machinery in the Soho Manufactory. In 1789 he was sent to Manchester to install a steam engine for Peter Drinkwater and thus his long connection with the city began. In 1790 Ewart took up residence in Manchester as Boulton \& Watt's representative. Amongst other engines, he installed one for Samuel Oldknow at Stockport. In 1792 he became a partner with Oldknow in his cotton-spinning business, but because of financial difficulties he moved back to Birmingham in 1795 to help erect the machines in the new Soho Foundry. He was soon back in Manchester in partnership with Samuel Greg at Quarry Bank Mill, Styal, where he was responsible for developing the water power, installing a steam engine, and being concerned with the spinning machinery and, later, gas lighting at Greg's other mills.
    In 1798, Ewart devised an automatic expansion-gear for steam engines, but steam pressures at the time were too low for such a device to be effective. His grasp of the theory of steam power is shown by his paper to the Manchester Literary and Philosophical Society in 1808, On the Measure of Moving Force. In 1813 he patented a power loom to be worked by the pressure of steam or compressed air. In 1824 Charles Babbage consulted him about automatic looms. His interest in textiles continued until at least 1833, when he obtained a patent for a self-acting spinning mule, which was, however, outclassed by the more successful one invented by Richard Roberts. Ewart gave much help and advice to others. The development of the machine tools at Boulton \& Watt's Soho Foundry has been mentioned already. He also helped James Watt with his machine for copying sculptures. While he continued to run his own textile mill, Ewart was also in partnership with Charles Macintosh, the pioneer of rubber-coated cloth. He was involved with William Fairbairn concerning steam engines for the boats that Fairbairn was building in Manchester, and it was through Ewart that Eaton Hodgkinson was introduced to Fairbairn and so made the tests and calculations for the tubes for the Britannia Railway Bridge across the Menai Straits. Ewart was involved with the launching of the Liverpool \& Manchester Railway as he was a director of the Manchester Chamber of Commerce at the time.
    In 1835 he uprooted himself from Manchester and became the first Chief Engineer for the Royal Navy, assuming responsibility for the steamboats, which by 1837 numbered 227 in service. He set up repair facilities and planned workshops for overhauling engines at Woolwich Dockyard, the first establishment of its type. It was here that he was killed in an accident when a chain broke while he was supervising the lifting of a large boiler. Engineering was Ewart's life, and it is possible to give only a brief account of his varied interests and connections here.
    [br]
    Further Reading
    Obituary, 1843, "Institution of Civil Engineers", Annual General Meeting, January. Obituary, 1843, Manchester Literary and Philosophical Society Memoirs (NS) 7. R.L.Hills, 1987–8, "Peter Ewart, 1767–1843", Manchester Literary and Philosophical
    Society Memoirs 127.
    M.B.Rose, 1986, The Gregs of Quarry Bank Mill The Rise and Decline of a Family Firm, 1750–1914, Cambridge (covers E wart's involvement with Samuel Greg).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester; R.L.Hills, 1989, Power
    from Steam, Cambridge (both look at Ewart's involvement with textiles and steam engines).
    RLH

    Biographical history of technology > Ewart, Peter

  • 15 Leeuwenhoek, Antoni van

    [br]
    b. 24 October 1632 Delft, Netherlands
    d. 1723 Delft, Netherlands
    [br]
    Dutch pioneer of microscopy.
    [br]
    He was the son of a basketmaker, Philip Tonisz Leeuwenhoek, and Grietje Jacobsdr van den Berch, a brewer's daughter. After the death of his father in 1637, his mother married the painter Jacob Jansz Molijn. He went to school at Warmond and, later to an uncle who was Sheriff of Benthuizen. In 1648 he went to Amsterdam, where he was placed in a linen-draper's shop owned by William Davidson, a Scottish merchant. In 1652 or 1653 he moved back to Delft, where in 1654 he married the daughter of a cloth-merchant, Barbara de Mey. They had five children, only one of whom survived (born 22 September 1656). At about this time he bought a house and shop in the Hippolytus buurt and set up in business as a draper and haberdasher. His wife died in 1666 and in 1671 he married Cornelia Swalmius, a Reformed Church minister's daughter. Lacking self-confidence and not knowing Latin, the scientific language of the day, he was reluctant to publish the results of his investigations into a multitude of natural objects. His observations were made with single-lens microscopes made by himself. (He made at least 387 microscopes with magnifications of between 30x and 266x.) Among the subjects he studied were the optic nerve of a cow, textile fibres, plant seeds, a spark from a tinderbox, the anatomy of mites and insects' blood corpuscles, semen and spermatozoa. It was the physician Reinier de Graaf who put him in touch with the Royal Society in London, with whom he corresponded for fifty years from 1673. One of his last letters, in 1723, to the Royal Society was about the histology of the rare disease of the diaphragm that he had studied in sheep and oxen and from which he died. In public service he was a chamberlain to the sheriffs of Delft, a surveyor and a wine-gauger, offices which together gave him an income of about 800 florins a year. Leeuwenhoek never wrote a book, but collections were published in Latin and in Dutch from his scientific letters, which numbered more than 250.
    [br]
    Principal Honours and Distinctions
    FRS 1680.
    Further Reading
    L.C.Palm and H.A.M.Snelders, Antoni van Leeuwenhoek 1632–1723: Studies in the Life and Work of the Delft Scientist, Commemorating the 350th Anniversary of his Birthday.
    B.Bracegirdle (ed.), Beads of Glass: Leeuwenhoek and the Early Microscope. (Catalogue of an exhibition in the Museum Boerhaave, November 1982 to May 1983, and in the Science Museum, May to October 1983).
    IMcN

    Biographical history of technology > Leeuwenhoek, Antoni van

  • 16 Rankine, William John Macquorn

    [br]
    b. 5 July 1820 Edinburgh, Scotland
    d. 1872
    [br]
    [br]
    Rankine was educated at Ayr Academy and Glasgow High School, although he appears to have learned much of his basic mathematics and physics through private study. He attended Edinburgh University and then assisted his father, who was acting as Superintendent of the Edinburgh and Dalkeith Railway. This introduction to engineering practice was followed in 1838 by his appointment as a pupil to Sir John MacNeill, and for the next four years he served under MacNeill on his Irish railway projects. While still in his early twenties, Rankine presented pioneering papers on metal fatigue and other subjects to the Institution of Civil Engineers, for which he won a prize, but he appears to have resigned from the Civils in 1857 after an argument because the Institution would not transfer his Associate Membership into full Membership. From 1844 to 1848 Rankine worked on various projects for the Caledonian Railway Company, but his interests were becoming increasingly theoretical and a series of distinguished papers for learned societies established his reputation as a leading scholar in the new science of thermodynamics. He was elected Fellow of the Royal Society in 1853. At the same time, he remained intimately involved with practical questions of applied science, in shipbuilding, marine engineering and electric telegraphy, becoming associated with the influential coterie of fellow Scots such as the Thomson brothers, Napier, Elder, and Lewis Gordon. Gordon was then the head of a large and successful engineering practice, but he was also Regius Professor of Engineering at the University of Glasgow, and when he retired from the Chair to pursue his business interests, Rankine, who had become his Assistant, was appointed in his place.
    From 1855 until his premature death in 1872, Rankine built up an impressive engineering department, providing a firm theoretical basis with a series of text books that he wrote himself and most of which remained in print for many decades. Despite his quarrel with the Institution of Civil Engineers, Rankine took a keen interest in the institutional development of the engineering profession, becoming the first President of the Institution of Engineers and Shipbuilders in Scotland, which he helped to establish in 1857. Rankine campaigned vigorously for the recognition of engineering studies as a full university degree at Glasgow, and he achieved this in 1872, the year of his death. Rankine was one of the handful of mid-nineteenth century engineers who virtually created engineering as an academic discipline.
    [br]
    Principal Honours and Distinctions
    FRS 1853. First President, Institution of Engineers and Shipbuilders in Scotland, 1857.
    Bibliography
    1858, Manual of Applied Mechanics.
    1859, Manual of the Steam Engine and Other Prime Movers.
    1862, Manual of Civil Engineering.
    1869, Manual of Machinery and Millwork.
    Further Reading
    J.Small, 1957, "The institution's first president", Proceedings of the Institution of Engineers and Shipbuilders in Scotland: 687–97.
    H.B.Sutherland, 1972, Rankine. His Life and Times.
    AB

    Biographical history of technology > Rankine, William John Macquorn

  • 17 Russell, John Scott

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 May 1808 Parkhead, near Glasgow, Scotland
    d. 8 June 1882 Isle of Wight, England
    [br]
    Scottish engineer, naval architect and academic.
    [br]
    A son of the manse, Russell was originally destined for the Church and commenced studies at the University of St Andrews, but shortly afterwards he transferred to Glasgow, graduating MA in 1825 when only 17 years old. He began work as a teacher in Edinburgh, working up from a school to the Mechanics Institute and then in 1832 to the University, where he took over the classes in natural philosophy following the death of the professor. During this period he designed and advised on the application of steam power to road transport and to the Forth and Clyde Canal, thereby awakening his interest in ships and naval architecture.
    Russell presented papers to the British Association over several years, and one of them, The Wave Line Theory of Ship Form (although now superseded), had great influence on ship designers of the time and helped to establish the formal study of hydromechanics. With a name that was becoming well known, Russell looked around for better opportunities, and on narrowly missing appointment to the Chair of Mathematics at Edinburgh University he joined the upand-coming Clyde shipyard of Caird \& Co., Greenock, as Manager in 1838.
    Around 1844 Russell and his family moved to London; following some business problems he was in straitened circumstances. However, appointment as Secretary to the Committee setting up the Great Exhibition of 1851 eased his path into London's intellectual society and allowed him to take on tasks such as, in 1847, the purchase of Fairbairn's shipyard on the Isle of Dogs and the subsequent building there of I.K. Brunel's Great Eastern steamship. This unhappy undertaking was a millstone around the necks of Brunel and Russell and broke the health of the former. With the yard failing to secure the order for HMS Warrior, the Royal Navy's first ironclad, Russell pulled out of shipbuilding and for the remainder of his life was a designer, consultant and at times controversial, but at all times polished and urbane, member of many important committees and societies. He is remembered as one of the founders of the Institution of Naval Architects in 1860. His last task was to design a Swiss Lake steamer for Messrs Escher Wyss, a company that coincidentally had previously retained Sir William Fairbairn.
    [br]
    Principal Honours and Distinctions
    FRS 1847.
    Bibliography
    John Scott Russell published many papers under the imprint of the British Association, the Royal Society of Arts and the Institution of Naval Architects. His most impressive work was the mammoth three-volume work on shipbuilding published in London in 1865 entitled The Modern System of Naval Architecture. Full details and plans of the Great Eastern are included.
    Further Reading
    G.S.Emmerson, 1977, John Scott Russell, a Great Victorian Engineer and Naval Architect, London: Murray
    FMW

    Biographical history of technology > Russell, John Scott

См. также в других словарях:

  • Strathclyde Business School — The Strathclyde Business School (SBS) is one of the five schools which constitute the University of Strathclyde in Glasgow, Scotland. It includes a number of departments which offer undergraduate and postgraduate courses, and the Department of… …   Wikipedia

  • University of Edinburgh Business School — Established 1918 Type Public Head of School Professor Nick Oliver Academic staff ca 100 Undergraduates 880 …   Wikipedia

  • Scottish Parliament Business Exchange — The Scottish Parliament Business Exchange is promoted as an educational exchange allowing members of the Scottish parliament to learn more about all kinds of business. All corporate participants are required to sign a letter affirming they will… …   Wikipedia

  • Scottish Parliament general election, 2007 — Scottish Parliament election, 2007 2003 ← members 3 May 2007 Members elected →  …   Wikipedia

  • School board (Scotland) — School Boards in Scotland were involved in determining the overall policies, objectives and ethos at the school. Boards have a special duty to promote good relationships between the school, its parents and the community and also form a channel… …   Wikipedia

  • School shooting — School shooter redirects here. For the Half Life 2 mod, see School Shooter: North American Tour 2012. Terrorism Definitions · Counter terrorism Inter …   Wikipedia

  • Scottish Parliament — For the national legislative body before 1707, see Parliament of Scotland. Scottish Parliament Pàrlamaid na h Alba 4th Parliame …   Wikipedia

  • Scottish Parliament Building — The Scottish Parliament Building ( gd. Pàrlamaid na h Alba) [ [http://www.scottish.parliament.uk/vli/language/gaelic/index.htm scottish.parliament.uk] , accessed 2 May 2007] is the home of the Scottish Parliament at Holyrood, within the UNESCO… …   Wikipedia

  • Business rates in England and Wales — This article is about Business rates in England and Wales. For Scotland, see Business rates in Scotland. Taxation in the United Kingdom This article is part of the series: Politics and government of the United Kingdom Central gover …   Wikipedia

  • Scottish Gaelic — Not to be confused with Scots language or Scottish English. Scottish Gaelic Gàidhlig Pronunciation [ˈkaːlikʲ] Spoken in …   Wikipedia

  • Scottish Labour Party — This article is about the part of the British Labour Party which operates in Scotland. For other political parties with the same name, see Scottish Labour Party (disambiguation). Scottish Labour Party Pàrtaidh Làbarach na h Alba Scottis Labour… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»